
Introduction

Motivation

- Improvement of Ship Energy Efficiency
- Reduction of emissions to air
- Reaching insignificant noise and vibration level

Driver

- Environmental regulations to
 - Increase efficiency of ship operation
 - Reduce NO_{X_1} SO_{X_1} CO_2 and particle (PM) emissions

3 DNV GL © 2014

CST - 10th of September 201

DNV·G

Introduction

Possible Solutions

- Ship and system design
 - Hull optimization
 - Alternatives fuels
 - Alternatives energy converters
- System and components operation
 - Optimization of given technologies
 - Optimization of power management
- Ship operation
 - Logistics optimisation
 - Speed selection
 - Routing

- Ship Energy Efficiency
- Emissions
- Noise & Vibration

Maritime Fuel Cell technology is promising to enhance ship design and operation

DNV GL © 201

ICST - 10th of September 2015

DNV·GI

Introduction

Today's most promising project

- e4Ships German funded Lighthouse project for maritime Fuel Cell application
- Aim Development of Fuel Cell auxiliary power generator capable for serial production
- Developments are in line with the objectives of the German "mobility and fuel strategy":
 - Introduction of alternative and regenerative fuels
 - Development of innovative power technologies
 - Aiming a big share of Hydrogen and Fuel Cell application for all modes of transport in a long-term view

A project of

Funded by

Coordinated by

5 DNV GL © 201

ICST - 10th of September 201

DNV·G

Technology Overview

Fuel Cells for Transportation

- Fuel Cells Systems have been tested for all modes of transport
- Different Fuel Cell types were developed

Market survey shows* that in terms of

- Development status
- Efficiency
- Load change behaviour
- Fuel flexibility

PEMFC and HTFC are most suitable for maritime applications

*Market study conducted in parallel to the start of "e4Ships" project

6 DNV GL © 2014

ICST - 10th of September 2015

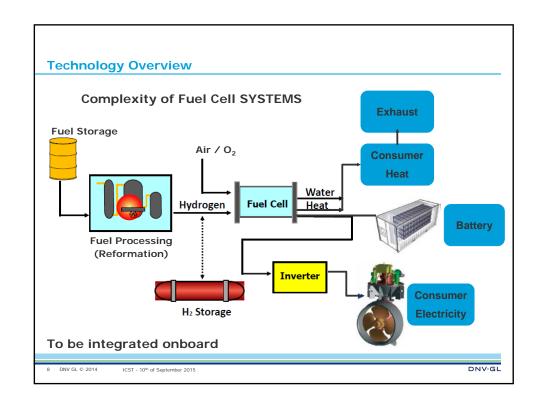
Technology Overview

Suitable Fuel Cell Types

PEMFC

- High development status
- Dynamic load profiles possible

MCFC, SOFC (HTFC)


- High efficiency
- Low requirements on fuel and air quality (in comparison to PEMFC)
- High temperature exhaust air at 650°C to 1,000°C enables combination with CHP processes

Fuel cell type	Temperature (°C)	Electric efficiency (%)
Proton Exchange Membrane (PEM)	30-100	35-40
High Temperature PEM (HT-PEM)	160-200	~45
Molten Carbonate (MCFC)	~650	45-50
Solid Oxide (SOFC)	500-1100	45-50

Figures derived from project results including losses; increase of efficiency expected due to further development

7 DNV GL © 2014

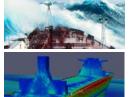
CST - 10th of September 201!

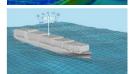
Technology Overview

Challenges, in general

- Fuel Cell system lifetime
- Dimensions and weights
- Investment costs
 - Comparable with diesel engines at 400 \$/kW, and thus the lifetime costs of the installation must be compared (investments and operation).
 - MCFC module prices by 3,000 \$/kW and also significantly higher
 - A target of 1,500 \$/kW has frequently been used which can be achieved between 2020 and 2025

9 DNV GL © 201


ICST - 10th of September 201


DNV·G

Technology Overview

Challenges, maritime

- Maritime Environment
 - ship motions
 - vibrations
 - humidity till 60 %
 - salty air
 - temperatures:
 - \bullet Full load capacity and efficiency till 45 $^{\circ}\text{C}$
 - Full response for electrical equipment till 55°C
- Design requirements
 - testing criteria (different to land-based application)
 - reliability and availability
 - fuel storage, transport, processing onboard


10 DNV GL © 2014

ICST - 10th of September 2015

Maritime Applications

PEMFC demonstrations projects

- Submarines, yachts, ferries and boats have been fitted with PEM fuel cells running on hydrogen
- Examples are
 - the 2 x 50 kW units on the ferry FCS Alsterwasser in Hamburg
 - the 60-70 kW installation on the ferry *Nemo* H2 in Amsterdam.
 - the 12 kW HTPEM installation on the harbour ferry *MF Vågen* in Bergen
 - A larger installation of HTPEM on a cruise vessel (tested within the Pa-X-ell project).

11 DNV GL © 201

ICST - 10th of September 201

DNV·G

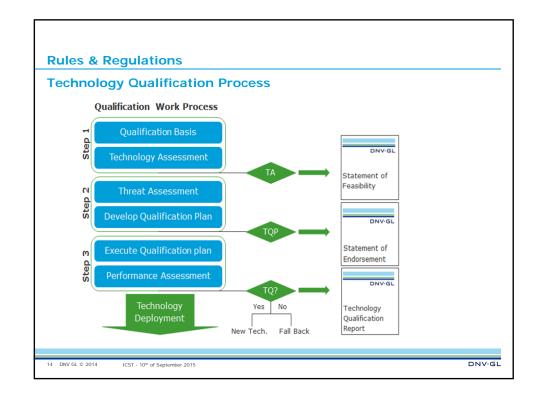
Maritime Applications

MCFC and SOFC demonstration projects

- Several commercial vessels have been fitted with Molten Carbonate and Solid Oxide fuel cells running on Methanol / Natural Gas
- Examples are:
 - A methanol-fuelled SOFC plant of 20 kW tested on board of the car carrier Undine
 - The LNG fuelled MCFC plant of 330 kW MCFC installed on board of the Viking Lady (FellowShip project)
 - A SOFC installation to be tested onboard of a commercial vessel during the SchIBZ project

12 DNV GL © 2014

ICST - 10th of September 2015


Rules & Regulations

Current approval baselines

- Existing demonstrations projects were approved by classification society and administrations following different approaches
 - Risk based approaches considering applicable requirements from SOLAS and IACS
 - Following prescriptive requirements in existing FC Class rules
- > Currently there is no international binding regulation defining prescriptive requirements for maritime Fuel Cell applications in force
 - Neither for the onboard storage, transport and processing of suitable fuels for Fuel Cells ...

13 DNV GL © 2014

CST - 10th of September 201

Rules & Regulations

Classification Guidelines

- The first classification Guideline for Fuel Cell Installation onboard of ships were published by GL in 2002
- In parallel DNV developed classification Guideline for maritime FC applications close together with guidelines for gas as ship fuel (2008)
- At the moment both Guidelines are in a merging process to build DNV GL Guidelines
- The "one set of FC guidelines" will be available beginning 2016
- Up to this publication both above mentioned quidelines are valid

Chapter 2 - Propulsion, power generation and auxiliary systems

Section 3 - Fuel cell installation

DNV-G

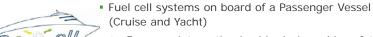
15 DNV GL © 2014

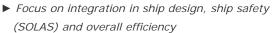
CST - 10th of September 201

Ongoing Developments

Regulatory frame work

- Since 2009 IMO's Interim Guidelines MSC.285(86)
 giving construction guidelines for the use of Natural
 Gas as Fuel (based on combustion engines)
- Since mid of 2015 Draft Internal binding "IGF Code" defining prescriptive requirements for NG as fuel
- Expected end of 2015 Amendments to RVIR
 Amendments to the Rhine Vessel Inspection
 Regulations RVIR in work defining prescriptive requirements for NG as fuel for inland vessels
- Further development of IGF Code
 Second phase of the IGF Code development aims i.a.
 the implementation of requirements for Fuel Cell
 Systems; initially for the use of NG as fuel


16 DNV GL © 2014

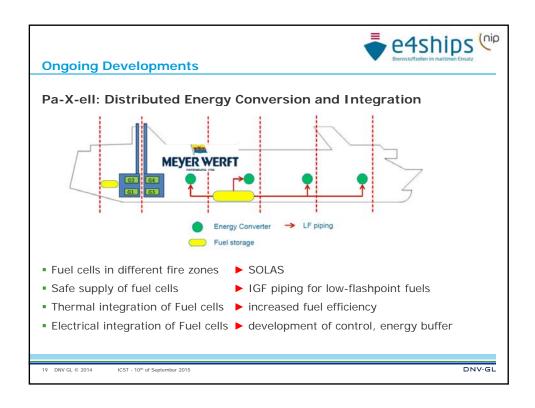

ICST - 10th of September 2015

German funded lighthouse project "e4ships"

- Framework project "Toplaterne"
 - ► Focus on safety and rule development

SchIBZ

River Cel🏳


- High Temperature Fuel Cell systems on board of Passenger and Special Vessels
 - ► Focus on application of diesel fuel oil and hybrid design (FC Battery Buffer)
- Fuel Cell systems on board of an inland navigation Vessels
 - ► Hybrid system design (just started) (Diesel, Fuel Cell, Energy Buffer)

17 DNV GL © 2014

CST - 10th of September 201

DNV·GL

Ongoing Developments e4Ships partner AIDA Sertenergy' LÜRSSEN sunfire DNV·GL ThyssenKrupp DLR VSM **MEYER WERFT** FLENSBURGER hy SOLUTIONS INVEN e4ships 🐤 DNV·GL 18 DNV GL © 2014 ICST - 10th of September 2015

Pa-X-ell: Actual achievements

- Modularized FC system concept
- 120 kW Fuel Cell Container Methanol Fuel Cell Rack with auxiliary equipment
- Risk Assessment performed for Fuel Cell and Methanol system
- In operations since May 2014 for long term trials
- Second generation of FC module developed (higher efficiency, reduced invest. Cost)

20 DNV GL © 2014

ICST - 10th of September 2015

SchIBZ – application of Solid Oxide Fuel Cells

- 100 kWel high-temperature fuel cell for seagoing vessels has been developed and manufactured
- SOFC is fuelled with diesel oil
- Use of diesel fuel for SOFC system successful tested
- Practical testing planned for end of 2015 / 2016

21 DNV GL © 201

CST - 10th of September 201

DNV·G

Ongoing Developments

SchIBZ: Actual achievements

Diesel reforming:

proof of concept over more than 3200h with 10ppmS diesel fuel with the result of a clean fuel gas

• SOFC Module:

construction of a 27kW SOFC module for ship borne use, test with minimal degradation over more than 1000h, electrical efficiency 50+%

System:

Risk Assessment performed for SOFC systems and intended onboard integration

e4ships 🖰

22 DNV GL © 2014

ICST - 10th of September 2015

Toplaterne - Safety

- Definition of functional safety requirements for Fuel Cell applications
- Assessment of designs by means of risk assessments
- Deduction of IGF Code Requirements for Fuel Cells for submission to the IMO through the German Administration and CESA

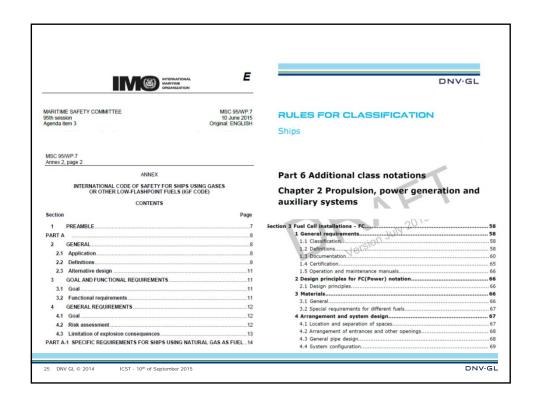
Recently from the IMO

- Sub-committee of IMO's MSC "CCC Carriage of Cargoes and Containers" will meet next week 38 for CCC2
- Topics from the Agenda
 - Requirements for Fuel Cells
 - Requirements for Methanol as fuel

23 DNV GL © 2014

ST - 10th of September 2015

DNV·GL


Summary & Outlook

- FC technology is available from land-based applications
- Principal maritime suitability was proven by demonstration projects
- e4Ships is currently the most promising project worldwide developing and testing marketable maritime FC Systems until end of 2016
- Developments by Pa-X-ell and SchIBZ aiming significant reductions of investment costs and increase of lifetime of maritime FC systems
- Resulting from Toplaterne requirements will be implemented in the IGF
 Code building international regulatory baselines for FC applications
- For all projects within e4Ships a second phase is in development for further practical testing of maritime FC technology until 2022
- Developments are strongly supported by the Federal Ministry of Transport and Digital Infrastructure

24 DNV GL © 2014

ICST - 10th of September 2015

